

WebADE Report Generation Extension
Technical Guide

Prepared for:

Ministry of Forests
Information Management Group

Version 4.1.0

December 1, 2005

Prepared by:

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 2

Document Change Control

REVISION NUMBER DATE OF ISSUE AUTHOR(S) BRIEF DESCRIPTION OF CHANGE

2.3.0 April 1, 2002 Jason Ross Updated documentation to WebADE
Version 2.3

2.3.1 May 10, 2002 Jason Ross Updated Report Queue Manager
initialization procedure

2.5.2 Feb 10, 2003 Jason Ross No changes

2.5.3 Feb 20, 2003 Jason Ross Combining Reporting documentation
into a single WebADE extension

document.

3.1.0 Dec 10, 2003 Jason Ross Updated to reflect the changes for
Reporting Extension 3.1.0

4.1.0 Dec 1, 2005 Jason Ross Updated to reflect the changes for
Reporting Extension 4.1.0

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 3

Table of Contents

1. OVERVIEW..5

1.1 WEBADE REPORT GENERATION ...5

1.1.1Application Requirements ...5

1.1.2Technical Requirements ...5

1.1.3Report Generation Architecture ...5

2. REPORT GENERATION API ..9

2.1.1Data Model .. 10

2.1.2Table Description.. 11

2.1.3Stored Procedures... 13

2.1.4Crystal Enterprise Interface... 14

3. INSTALLING THE WEBADE REPORT GENERATION EXTENSION..................... 16

3.1 WEBADE REPORT GENERATION DATABASE INSTALL.......................... 16

3.2 INSTALLING THE REPORT QUEUE MANAGER 16

4. INSTALLING AND CONFIGURING REPORT GENERATION............................. 17

4.1 INSTALLING AND CONFIGURING REPORT GENERATION 17

4.1.1Populating the Database Tables.. 17

5. MANAGING THE REPORT QUEUE MANAGER ... 19

5.1 CONFIGURING AND RUNNING A REPORT QUEUE MANAGER PROCESS..... 19

5.2 READING THE REPORT QUEUE MANAGER LOG FILE 20

5.3 MANAGING THE DATABASE QUEUE... 20

6. USING THE REPORT GENERATION EXTENSION API................................... 21

6.1 INTRODUCTION... 21

6.1.1Changes from the Report Generation API.................................... 21

6.2 CREATING A REPORT REQUEST ... 22

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 4

6.2.1Retrieving the ADEReportManager .. 22

6.2.2Registering the WebADE Reporting Extension 23

6.2.3Create an ADEReportRequest Object ... 23

6.2.4Submitting the Report.. 23

7. WEBADE REPORT GENERATION TEST APPLICATION................................. 24

7.1 INSTALLING THE APPLICATION.. 24

7.2 FEATURES DEMONSTRATED.. 24

8. TROUBLESHOOTING.. 25

8.1 REPORT GENERATION API TROUBLESHOOTING................................ 25

8.1.1Error Handling.. 25

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 5

1. OVERVIEW

1.1 WEBADE REPORT GENERATION

WebADE applications often have requirements to support on-line and on-request batch

reporting. The Report Generation API was developed in order to provide a common

reporting interface as an extension to the existing WebADE framework.

1.1.1 Application Requirements

• Must support generation of reports on-line, and deliver reports to a user’s browser

• Must support generation of reports off-line, and deliver reports to a user via e-mail

• Must provide capabilities to deliver reports in multiple file formats

• Must handle requests gracefully, i.e. the framework should isolate the application from the details of
the underlying reporting tool, and should handle underlying error conditions wherever possible

1.1.2 Technical Requirements

• A simple, tool-independent API for the Web ADE to request reports from an external reporting
engine (e.g., Crystal Reports) through a distinct set of public methods. The design of the API should
support multiple underlying implementations (including incorporation of new reporting engine
software) without requiring changes to the application.

• Ability to configure requests through the API in order to specify:

1. Name of the report

2. Parameters for the report

3. Output format (e.g., PDF, RTF, CSV, etc.)

4. Delivery method (e.g., direct (stream), SMTP, file)

5. Maximum wait time

6. Other parameters

• A queue manager to allow graceful handling of requests. The application must ensure that the
number of concurrent requests forwarded to Crystal Reports is limited to the available Crystal
licenses.

• Modularity to allow for selective implementation of the features described above so that features can
be added on a priority basis as time and resources permit.

• Thread-safe.

1.1.3 Report Generation Architecture
The following solution meets the basic reporting requirements, and provides a platform on
which to provide enhanced features in the future.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 6

Basic requirements include the capability to produce reports both on-line and in “batch” (or

“off-line”) mode, the latter delivered to the user via e-mail. In the initial release, the
request will not include additional parameters such as “priority” and “wait time”. The

architecture will provide a generic interface, so that reporting tools other than Crystal

Reports may be integrated in the future, but other reporting tools will not be investigated at
this time.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 7

The proposed solution can be illustrated as follows:

Report Server Report Server

WebADE DB

App Server

Report Queue
Manager

Apps A, B, C

Report Job Queue

Config Tables

WebADE Reporting System Architecture
Prepared By: Martin Davis, Vivid Solutions Inc.
Last Revision: 6 February, 2002

App A

WebADE

Reporting API

App B App C

App Server

App D

WebADE

Reporting API

App App

Report Queue Monitor

Batch Report Queue
Information Flow

Online Report Queue
Information Flow

Report Server

Report Queue
Manager

App D

Rpt
A1

Rpt
A2

Rpt
B1

Rpt
C1

Rpt
D1

Log
File

Log
File

OnlineBatch OnlineBatch

Report Queue
Managers can
dispatch to any
Report Server

Queue contains all jobs
for all apps

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 8

When the user makes a request for a report, the WebADE Application determines whether

the report is to be returned to the user immediately, or is to be submitted for processing
off-line.

The available Crystal Enterprise licenses have to be allocated between on-line access and
batch access. All applications which require on-line access to reports must be allocated

sufficient licenses to support on-line reporting volumes.

1.1.3.1 On-line Scenario
If the report is to be returned to the user immediately, then WebADE submits this request

to an internal queue, and then forwards the request to the Crystal Enterprise report server

as soon as a session is available. When the report is available, it is returned to the user.
This is suitable for small reports with short processing times.

If the number of requests exceeds the capability of Crystal Enterprise to generate the
reports in a timely manner, that a user’s request will time out. In this case, the user will be

given a message that the server is currently busy, and has the following options:

• They can re-try their request at a later time

• They can submit the request for off-line processing

1.1.3.2 Off-line (Batch) Scenario
If the report is to be processed off-line, then WebADE inserts this request into a database

queue, and returns a confirmation page to the user immediately, indicating that the request

has been received. A separate batch process retrieves requests from the database,
forwards the requests to the Crystal Enterprise report server, and e-mails the reports to the

requesting user. This is suitable for large reports with long processing times, or reports

which are generated in “data format” (i.e. formatted to be read by another application).

1.1.3.3 Phase 1 Supported Functionality
The following requirements are supported in the initial release:

• Immediate on-line delivery of reports

• Off-line (batch) delivery of reports via e-mail

• Support for Crystal Enterprise server-generated reports

• Support for Oracle Stored Proc-generated reports

• extensible design to allow future integration of additional reporting engines

• Report formats via Crystal: PDF, DOC, XLS, RTF and HTML

• Report formats via Oracle Stored Proc: CSV, any text-based format

• Queue manager within the Crystal Enterprise interface

The following requirements are NOT supported:

• Prioritization of requests (requests are processed in the order received)

• Report delivery via FTP

• Drill-down reports; Crystal-format reports

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 9

2. REPORT GENERATION API

The Report Generation API allows applications to use Crystal Reports and Oracle Stored

Procedures to generate reports and deliver them over the Web or Email to users.

Reports can be processed and returned in one of two ways:

Online: Reports are generated at the time the request is submitted and returned directly to
the user.

Batch: Report requests are queued in a database table. One or more separate processes
running the Report Queue Manager application process requests from this queue,

generating the reports and returning them to the user via email.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 10

2.1.1 Data Model
Diagra
m :
 �Title : WebA
DE Repo
rting�Created : 26 Feb
ruary 2002
 10:45:08�Modified : 21 May 20
03 16:19:56�Author : Vivid Solutions
 Inc.�

APPLICATION
APPLICATION_ACRONYM# APPLICATION_ACRONYM
* APPLICATION_NAME* APPLICATION_NAME
* APPLICATION_DESCRIPTION* APPLICATION_DESCRIPTION
o APPLICATION_OBJECT_PREFIXo APPLICATION_OBJECT_PREFIX
* ENABLED_IND* ENABLED_IND
o DISTRIBUTE_TYPE_CDo DISTRIBUTE_TYPE_CD

REPORT_SERVER
REPORT_SERVER_ID# REPORT_SERVER_ID
o REPORT_QUEUE_MANAGER_IDo REPORT_QUEUE_MANAGER_ID
* CRYSTAL_SERVER_URL* CRYSTAL_SERVER_URL
o BATCH_CRYSTAL_MAX_SESSIONSo BATCH_CRYSTAL_MAX_SESSIONS

MIME_TYPE_CODE
MIME_TYPE_CODE# MIME_TYPE_CODE
* DESCRIPTION* DESCRIPTION
* EFFECTIVE_DATE* EFFECTIVE_DATE
* EXPIRY_DATE* EXPIRY_DATE
* UPDATE_TIMESTAMP* UPDATE_TIMESTAMP

PROCESSING_STATUS_CODE
PROCESSING_STATUS_CODE# PROCESSING_STATUS_CODE
* DESCRIPTION* DESCRIPTION
* EFFECTIVE_DATE* EFFECTIVE_DATE
* EXPIRY_DATE* EXPIRY_DATE
* UPDATE_TIMESTAMP* UPDATE_TIMESTAMP

REPORT_SUB_REPORT
SUB_REPORT_NAME# SUB_REPORT_NAME

REPORT_PARAMETER
PARAM_SEQUENCE# PARAM_SEQUENCE
* PARAM_NAME* PARAM_NAME
o PARAM_VALUEo PARAM_VALUE

REPORT_QUEUE
JOB_ID# JOB_ID
* REPORT_NAME* REPORT_NAME
* SUBMITTED_BY_USER* SUBMITTED_BY_USER
* SUBMITTED_TIME* SUBMITTED_TIME
o START_PROC_TIMEo START_PROC_TIME
o END_PROC_TIMEo END_PROC_TIME
o MIN_START_DATEo MIN_START_DATE
o MAX_START_DATEo MAX_START_DATE
o ERROR_MESSAGEo ERROR_MESSAGE
o REPORT_URLo REPORT_URL
o REPORT_DIRECTORYo REPORT_DIRECTORY
* ALLOW_REPORT_CACHE_IND* ALLOW_REPORT_CACHE_IND
o EMAIL_TO_ADDRESSo EMAIL_TO_ADDRESS
o EMAIL_SUBJECTo EMAIL_SUBJECT
o EMAIL_BODYo EMAIL_BODY

REPORT_PROXY_CONTROL
CONNECT_NAME# CONNECT_NAME
* DB_USERID* DB_USERID
* DB_PASSWORD* DB_PASSWORD
* CONNECTION_INFO* CONNECTION_INFO

REPORT_DELIVERY_CODE
REPORT_DELIVERY_CODE# REPORT_DELIVERY_CODE
* DESCRIPTION* DESCRIPTION
* EFFECTIVE_DATE* EFFECTIVE_DATE
* EXPIRY_DATE* EXPIRY_DATE
* UPDATE_TIMESTAMP* UPDATE_TIMESTAMP

REPORT_PROGRAM_CODE
REPORT_PROGRAM_CODE# REPORT_PROGRAM_CODE
* DESCRIPTION* DESCRIPTION
* EFFECTIVE_DATE* EFFECTIVE_DATE
* EXPIRY_DATE* EXPIRY_DATE
* UPDATE_TIMESTAMP* UPDATE_TIMESTAMP

REPORT_APPLICATION_CONFIG
* ONLINE_CRYSTAL_MAX_SESSIONS* ONLINE_CRYSTAL_MAX_SESSIONS
* ONLINE_CRYSTAL_MAX_WAIT* ONLINE_CRYSTAL_MAX_WAIT
* ONLINE_TEMP_DIRECTORY* ONLINE_TEMP_DIRECTORY
* CLEAN_TEMP_DIRECTORY_IND* CLEAN_TEMP_DIRECTORY_IND
o EMAIL_FROM_ADDRESSo EMAIL_FROM_ADDRESS
o EMAIL_FROM_MAILERo EMAIL_FROM_MAILER
o EMAIL_SMTP_HOSTo EMAIL_SMTP_HOST

is application for

has application

has report server

is report server for

has report application nameis report application for

has output format code

is output format code for

has status code

is status code for

has connection proxy

is connection proxy for

has report program code

is report program code for

is sub report for

has sub reports

is report parameter for
has report parameters

has delivery code

is delivery code for

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 11

2.1.2 Table Description

2.1.2.1 Report_Application_Config
Contains the application-specific configuration information necessary to generate reports for
that application.

Field Description

Application_Acronym The Web ADE application acronym.

Online_Crystal_Max_Sessio

ns

The maximum number of Crystal Web Server sessions available to

the online part of the Web ADE application.

Online_Crystal_Max_Wait The maximum time that an online request will wait for a session.

Online_Temp_Directory The local temporary directory to store generated reports before

delivering them.

Clean_Temp_Directory_Ind A flag indicating whether to delete report files from the temp
directory after a successful delivery. Valid values are ‘Y’ and ‘N’

Email_From_Address The “From” address to set for reports delivered by Email.

Email_From_Mailer The Mailer field to set for reports delivered by Email for this
application.

Email_SMTP_Host The SMTP host to use to deliver reports for this application.

Admin_Email_Address The application administrator’s email address.

Default_Report_Cache_Ind The default setting of the report cache indicator, if a request does

not specify one of its own.

Attempt_Threshold The maximum number of attempts per request, before an email is
sent to the application’s administrator.

2.1.2.2 Report_Server
Contains the server-specific configuration information necessary to generate reports for a

given report server to be used by the controlling Report Queue Manager.

Field Description

Report_Server_Id A unique key identifying the target Report Server.

Report_Queue_Manager_I

d

The name of the controlling Report Queue Manager for this Report

Server.

Crystal_Server_Url The URL location of the Crystal Web Server used to generate
reports for this Report Server.

Batch_Crystal_Max_Sessi

ons

The maximum number of Crystal Web Server sessions available to

the Report Server.

2.1.2.3 Report_Proxy_Control
Contains the connection information for application/reporting program/connect name

combinations.

Field Description

Application_Acronym The Web ADE application acronym.

Report_Program_Code The Report Program Code (Crystal or Oracle).

Connect Name The Connect Name, generally the Role name as used in the Web
ADE.

Connection_Info For Crystal Reporting, the ODBC name of the report’s database.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 12

For Oracle Reporting, the JDBC URL to the report’s database.

Db_Userid The user name used to connect to the Connection Info database.

Db_Password The password used to connect to the Connection Info database.

2.1.2.4 Report_Queue
Contains the report requests in all stages of completion.

Field Description

Job_Id The unique identifier of the report request.

Application_Acronym The Web ADE application acronym that generated this request.

Report_Program_Code The program to generate the report.

Connect_Name The connect name to use to look up the connection information for

this request.

Report_Name The name of the report on the Report Server for this request.

Email_To_Address (Optional) the Email address to deliver the report to after

completion.

Email_Subject The subject of the Email message sent when a report is successfully

generated.

Email_Body The body of the Email message sent when a report is successfully
generated.

Mime_Type_Code The desired format of the report.

Processing_Status_Code A flag indicating the current status of the request.

Report_Delivery_Code The delivery method to use to deliver the completed request.

Report_Directory The server side directory the Report Manager should place the

report after being generated.

Report_URL The Uniform Resource Locator needed by the user to retrieve the
file once it has been generated.

Min_Start_Date The date on or after the requested report should be executed and
delivered.

Max_Start_Date The latest date in which the report should be executed by. Reported

as an error if date passes.

Allow_Report_Cache_Ind A flag that indicates whether a report supports caching of generated

reports.

Report_Filename The name of the actual file generated by the Reporting API, and
delivered to the user.

Admin_Email_Sent_Ind A flag indicating if, when the request’s attempt count exceeds the

attempt threshold of this application, an email has been sent to the
application administrator, to alert them of a problem with the report

queue request.

Attempt_Count The number of times this request has been attempted to be
processed.

2.1.2.5 Report_Parameter
Contains the report request parameters to be passed to the Report Server for a given

request.

Field Description

Job_Id The unique identifier of the report request.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 13

Parameter_Sequence A key used to order the parameters.

Parameter_Name The name of the given parameter.

Parameter_Value The value of this parameter.

2.1.2.6 Report_Sub_Report
Contains the request’s sub reports for a given report.

Field Description

Job_Id The unique identifier of the report request.

Sub_Report_Name The name of the given sub report.

2.1.3 Stored Procedures
The Report Generation API interacts with the ADE database through stored procedures. The

stored procedures allow the Report Generation API to create, submit, retrieve, and process
report requests.

To install a stored procedure or package, the script for the object must be compiled on the
database. Stored Procedures can be compiled by executing the script in SQL Plus, or if a

tool like Toad is being used to interface with the database, then the stored procedure or

package can be compiled using the Stored Procedure editor.

The Web ADE application code corresponds to the Web ADE database application acronym

field in the application table.

Stored Procedure/Package Description

REPORTING_TYPES package The REPORTING_TYPES package defines the cursor

type. The cursor type is used by the stored
procedures to return a record set to the calling

application.
The REPORTING_TYPES package must be installed

first before installing any other stored procedures.

RPT_DELETE_REPORT Removes the report request from the database
queue.

RPT_INSERT_PARAMETERS Inserts the list of parameter names and values for a

given request into the database.

RPT_INSERT_SUB_REPORTS Inserts the list of sub reports for a given request into
the database.

RPT_SUBMIT_REQUEST2 Enters the report request into the report queue (Also

uses the RPT_INSERT_PARAMETERS and
RPT_INSERT_SUB_REPORTS procedures).

RPT_RESET_QUEUE Resets all requests whose processing state is

“Processing” to “Submitted” for the given Report
Server.

RPT_UPDATE_REQUEST Sets the processing status and (optional) error code

for the target report request to the given values.

RPT_COMPLETE_ONLINE_REQUEST Gets the connection info and (optional) Email settings

for a report request that is to be processed online.

RPT_FIND_NEXT_REQUEST Returns the next request on the queue for a given
Report Server. This method also sets the status of

the report to “Processing”.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 14

RPT_GET_PARAMETERS Returns the report parameter names and values for

the given report request.

RPT_GET_SUB_REPORTS Returns the sub reports for the given report request.

RPT_GET_APPLICATION_CONFIG Returns the online configuration information for the

given application.

RPT_GET_REPORT_SERVERS Returns the report server configuration information

for all report servers assigned to the given Report

Queue Manager.

RPT_GET_STATUS_COUNT Returns the number of reports with the given status

for the given Report Queue Manager

RPT_GET_REQUEST Fetches the specified request from the queue.

RPT_SEARCH_REQUESTS Searches the batch request queue for reports
matching the search criteria.

2.1.4 Crystal Enterprise Interface

2.1.4.1 Crystal HTTP Request
The HTTP request which is sent to Crystal Enterprise is of the following format:

http://<host>/<crystal>/<dir>/<report.rpt>?<export>&<database>&<report params>

Where:

• <host> = server name and port number running Crystal Enterprise

• <crystal> = top-level reports directory

• <dir> = application-specific report directory

• <report.rpt> = the specific report requested (note that the application requests
“<dir>/<report.rpt>”

• <export> = requested output format

• <database> = database connection information for the report (and sub-reports)

• <report params> = parameters for the report

Export format info is in the following format:

cmd=export&export_fmt=U2FPDF:0

Database connection info is in the following format (e.g. showing one sub-report):
user-HBSDEV.HBSDEV=HBS_DEV&password-HBSDEV.HBSDEV=HBS_DEV&user-

HBSDEV.HBSDEV@HBS00001a=HBS_DEV&password-HBSDEV.HBSDEV@HBS00001a=HBS_DEV

Report parameters are in the name=value format where the parameter name is prefixed
with “promptex-“. For example:

promptex-param1=acb&promptex-param2=def&promptex-param3=ghi

Note that a “promptex-REF_CURSOR=0” parameter is required if the report accesses a

stored procedure.

2.1.4.2 Session Management

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 15

Crystal Enterprise allows a limited number of sessions. A session is created automatically

when a report is requested, and is then expired after a pre-defined time limit (default 20
minutes, can be configured as low as 1 minute).

The Reporting Application will manage sessions as follows:

7. When a response is received from Crystal Enterprise, the Reporting Application will extract and
remember the following two cookies: “WCSID” and “apstoken”

8. On a subsequent request to Crystal Enterprise, the Reporting Application will include these two
cookies in the request

In this way, the Reporting Application will re-use an existing session, or create a new one as

necessary

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 16

3. INSTALLING THE WEBADE REPORT GENERATION EXTENSION

This section describes how to:

1. Install the database component for the WebADE Report Generation extension.
2. Install the WebADE Report Generation extension Java framework.

3. Deploy and configure web applications that use the framework.

3.1 WEBADE REPORT GENERATION DATABASE INSTALL

The following steps need to be performed to set up the WebADE Report Generation

database environment:

� Obtain the WebADE Report Generation DDL Scripts used to create the WebADE

Report Generation tables, indexes, foreign keys, stored procedures, and packages in
the same ORACLE database as the WebADE Database.

� Install the database objects to the same database schema that hosts the main

WebADE Database by executing the DDL scripts in SQL Plus, or an equivalent
interface.

3.2 INSTALLING THE REPORT QUEUE MANAGER

The Report Queue Manager is a stand-alone process from the WebADE. Thus, the Report

Queue Manager is installed separately from the WebADE application.

To install a Report Queue Manager, follow these steps:

� Acquire the WebADE.jar class library.
� Copy the WebADE.jar file to the desired Report Queue Manager working directory.

� Ensure that a properly configured “Log4J.properties” file exists in the working directory.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 17

4. INSTALLING AND CONFIGURING REPORT GENERATION

4.1 INSTALLING AND CONFIGURING REPORT GENERATION

Configuring an application that uses the Report Generation API involves the following steps:

1. Populate the reporting tables with application configuration and database
connection information.

2. If the application will be batching report requests, configure the report server and
application configuration tables with the report queue configuration information.

3. Configure the desired Report Queue Manager to process this application’s batch
requests.

4. Deploy the application’s reports to the Crystal Report Server instance responsible
for managing the application’s report requests. This association is bound by the

Report_Application_Config table’s Server_ID column in the WebADE database.

Once these steps are complete, the application can request online and batch reports.

4.1.1 Populating the Database Tables

The Report_Application_Config table contains the application-specific information for the

Report Generation API. These parameters must be set as follows:

Parameter Name Description

APPLICATION_ACRONYM Must match the WebADE Applicati on Acronym

REPORT_SERVER_ID Set to the desired Report Server i d(Only
set if this application is using the report
queue to process batch requests).

ONLINE_MAX_SESSIONS Maximum number of concurrent Cr ystal
sessions available to the web application

ONLINE_MAX_WAIT Maximum time to wait (in seconds) i f no
Crystal session is available

ONLINE_TEMP_DIRECTORY Temporary directory for repor ts generated
by the web application.

CLEAN_TEMP_DIRECTORY_IND Flag to delete reports fro m temp directory
after a successful delivery(Values are 1 or
0 for true or false).

EMAIL_FROM_ADDRESS The Email address to put in the From header
for all reports delivered by Email for this
application.

EMAIL_FROM_MAILER The Mailer application value to p ut in the
header for all reports delivered by Email
for this application.

EMAIL_SMTP_HOST The SMTP host used to deliver reports via
Email.

ADMIN_EMAIL_ADDRESS The application administrator’s email
address.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 18

DEFAULT_REPORT_CACHE_IND The default setting of the report cache
indicator, if a request does not specify
one of its own.

ATTEMPT_THRESHOLD The maximum number of attempts per request,
before an email is sent to the
application’s administrator.

The Report_Proxy_Control table must be populated with database connection information

used to run the reports. This connection information is specific to the type of program
generating the reports (e.g. Crystal Enterprise vs. Oracle Reports).

Column Name Description

CONNECT_NAME Name by which the application will ref er to
the database connection.

APPLICATION_ACRONYM Must match WebADE acronym

REPORT_PROGRAM_CODE Reporting program, must match a program code
in the Report_Program_Code table

DB_USERID User name used to log in to the database

DB_PASSWORD Password for the given user name.

CONNECTION_INFO For Crystal, this is an ODBC connec tion
name. For Oracle, this is the JDBC
connection string for the database.

The Report_Server table is populated with the report server-specific information used to

perform report queue processing.

Column Name Description

REPORT_SERVER_ID A unique id that identifies the sp ecific
report server.

SERVER_URL The HTTP URL location of the Crystal Web
Server.

REPORT_QUEUE_MANAGER_ID The name of the Report Queue Manager that
will be responsible for feeding this report
server report requests.

BATCH_MAX_SESSIONS The maximum number of Crystal se ssions
available to this report server.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 19

5. MANAGING THE REPORT QUEUE MANAGER

5.1 CONFIGURING AND RUNNING A REPORT QUEUE MANAGER PROCESS

A Report Queue Manager process can be created by executing the ReportQueueManager

class at the command line, or as an NT service. ReportQueueManager can be executed

using the following command line syntax:
“java –classpath <required WebADE and supporting libraries>

ca.bc.gov.mof.webade.reportgeneration.ReportQueueManager”

An example of this command line would be:

“java –classpath WebADE.jar;classes12.jar;mail.jar;log4j.jar;activation.jar
ca.bc.gov.mof.webade.reportgeneration.ReportQueueManager”

Before a Report Queue Manager can be run, however, it must first be configured. The
ReportQueueADEConnection class contains the Report Queue Manager process-specific

settings needed to run a Report Queue Manager process. The ReportQueueADEConnection

class has the following static fields that require the appropriate values for the given Report
Queue Manager.

Static Field Description

WEBADE_JDBCURL The JDBC database location URL of th e ADE
database

WEBADE_USERID The user name used to log on to the A DE
database

WEBADE_PASSWORD The password for the user name

RQM_NAME The unique name of this Report Queue Manag er
as stored in the Report_Queue_Manager_Id
column of the Report_Server table.

TEMP_DIR The local directory to temporarily store
generated reports before delivery.

CLEAN_TEMP_DIR Flag to delete reports after deliver y (true
or false)

LOG_FILE The local file location to create the log
file for the process. Ex: “C:\temp\rqm.log”

LOG_PRIORITY The Priority class instance indicating the
level of priority for log messages. One of:
Priority.DEBUG, Priority.INFO,
Priority.WARN, Priority.ERROR

First set these values in the ReportQueueADEConnection class, and then compile that class,

similar to what is done for the WebADEConnection class.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 20

5.2 READING THE REPORT QUEUE MANAGER LOG FILE

The location of the log file for the Report Queue Manager process is defined as a command

line parameter. This log file will contain all log messages generated by the Report Queue
Manager. If an error occurs, this should be the first place to look for details. See Section 6

for details on how to interpret and troubleshoot error messages.

5.3 MANAGING THE DATABASE QUEUE

If the database queue’s length gets too large, processed report requests can be removed

from the database queue. To remove requests, simply remove the rows from the
Report_Queue table, along with any associated rows in the Report_Parameter and

Report_Sub_Report tables.

Note: The records in the report queue can be useful for troubleshooting purposes. The

database queue should be backed-up before rows are removed.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 21

6. USING THE REPORT GENERATION EXTENSION API

6.1 INTRODUCTION

The Report Generation Extension API is a set of functionality that allows an application to

generate reports via Crystal Reports and/or Oracle stored procedure calls. As a WebADE

Extension, it implements the Extension API, and can be retrieved from the Application
object by the getWebADEExtension() method. For more information about WebADE

Extensions, see the WebADE documentation.

Before an application can use the Report Generation API to generate reports, the Report

Generation database component must be installed to the same location that the WebADE
database is installed. In addition there is some application-specific database configuration

that needs to be performed. To find out more about the specifics of this installation and

configuration, see the WebADE Administrator’s Guide.

6.1.1 Changes from the Report Generation API

To submit a request using the new API, there are two significant changes; the way the

ADEReportManager is retrieved, and the way the delivery target parameters are set.

1) ADEReportManager retrieval.

The ADEReportManager is now retrieved the same as all extensions:
ADEReportManager manager =
(ADEReportManager)app.getWebADEExtension(ADEReportM anager.class);

To enable this, the package for reporting had to be changed to

"ca.bc.gov.mof.webade.reportgeneration" instead of the old
"ca.bc.gov.mof.webade.reporting" package. Make sure your code reflects this package

change.

2) Delivery target initialization.

As variations for configuring a delivery target have increased, the implementation of having

multiple constructors for each variation has become unwieldy. Therefore, all constructors

that had delivery target parameters have been deprecated. (Delivery parameters are those
parameters that apply to how the report is delivered; i.e.: response object, email-to

address, drop-directory, etc.) The choices for initializing the ADEReportRequest are now as

follows:
1) Use the default constructor for the ADEReportRequest, and then call

the setters for all parameters.

2) User the constructor that requires all parameters for a request (except
for delivery parameters).

No matter which constructor you use, after the report is configured, create and initialize an
instance of the appropriate ReportDelivery subclasses (HttpDelivery, EmailDelivery,

DirectoryDelivery) and call the request's setReportDelivery() method, passing in the delivery
object.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 22

6.1.1.1 Sample Code

A sample request looks like this pseudo-code:

ADEReportRequest request = new ADEReportRequest(US ER_ROLE,

 getApplication().getCode(),
 RE PORT_PROGRAM,
 RE PORT_NAME
 RE PORT_OUTPUT_FORMAT,
 SU BMITTED_BY_USER,
 RE PORT_PARAMETER_NAMES[],
 RE PORT_PARAMETER_VALUES[],
 RE PORT_SUBREPORTS[],
);
if (isHTTPRequest) {
 request.setReportDelivery(new HttpDelivery(resp onseObject));
} else if (isEmailDelivery) {
 request.setReportDelivery(new EmailDelivery(ema ilToAddress, emailSubject,
emailBody));
} else if (isDirectoryDelivery) {
 request.setReportDelivery(new DirectoryDelivery (emailToAddress, dropDirectory,
pickupUrl));
}

//Optional
request.setMinStartTime(minStartTimeStamp);
//Optional
request.setMaxStartTime(maxStartTimeStamp);

Application app = this.getApplication();
ADEReportManager manager =
(ADEReportManager)app.getWebADEExtension(ADEReportM anager.class);
if (isOnlineSubmission) {
 manager.submitOnlineReportRequest(request);
} else {
 manager.submitBatchReportRequest(request);
}

6.1.1.2 Loading the Reporting Extension with WebADE
Originally, the legacy Reporting API was included with the WebADE library. However,
WebADE now supports the concept of “WebADE Extensions”, allowing a variety of add-on

API to be dynamically loaded into the WebADE to supply optional functionality that a

WebADE application might require. As these are optional components, you will need to
instruct the WebADE to load the WebADE Reporting Extension at application start-up, so

you can retrieve the extension using the instructions above. To perform this configuration,

see the following section in this guide

6.2 CREATING A REPORT REQUEST

To create a report request, you need to perform the following tasks:
• Retrieve the ADEReportManager extension from the Application object.

• Create an ADEReportRequest object, using the parameters and configuration settings

for the particular report request.
• Create the appropriate ReportDelivery object, using the appropriate values for the

particular delivery target.

• Pass the ADEReportRequest object to the ADEReportManager class, using either an
online or batch request.

6.2.1 Retrieving the ADEReportManager
The Application class has a new method called getWebADEExtension() that returns the
singleton object of the extension specified by the class passed in as a parameter. Call this

method, passing in the ADEReportManager.class object, and cast the object returned to a
ADEReportManager variable.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 23

The ADEReportManager manages all report requests for a WebADE application’s web
component. It allows a report request to be processed immediately(online), or submitted to

the queue to be processed at a later date(batch).

6.2.2 Registering the WebADE Reporting Extension

Before you can retrieve the ADEReportManager extension from the Application singleton,

the report-generation-preferences.sql database script must be run against the WebADE
database for your application.

When running the script, you will be prompted for the APPLICATION_ACRONYM. Enter the
WebADE Application Acronym for your application, as it appears in the WebADE

APPLICATION table.

For more information on WebADE Extension configuration, please see the WebADE User’s

Guide.

6.2.3 Create an ADEReportRequest Object
In order to create a report request, simply create and initialise an instance of the

ADEReportRequest, using the appropriate constructor and setter methods.

A properly initialised request object requires the following:

• The name of the report to call.
• A list of parameter names and values to be passed to the report

• A list of sub-reports
• The output format of the generated report

• The program that will generate the report (Crystal or Oracle)

In addition to the request object, create a ReportDelivery sub-class of the appropriate type

and the appropriate parameters:

HTTPDelivery constructor requires:

• HttpServletResponse object.

Email constructor requires:

• Email address to deliver the report to.

• Email Subject (optional)
• Email Body (optional)

Directory constructor requires:

• Email address to deliver the email containing the location of the file to.

• The server side path to a directory to drop the report into.
• The URL for the user to use to retrieve the file.

Finally, call the setReportDelivery() method of the request, passing in the initialised delivery
object.

Refer to the javadoc for the Report Generation API for complete details.

6.2.4 Submitting the Report
To submit the report, simply call the appropriate method of the ADEReportManager object.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 24

The submitOnlineReportRequest() method generates the report immediately and returns the
result to the appropriate delivery target. If the delivery method is passed an

HttpServletResponse object, the Report Generation API handles the remainder of the

response to the requesting user.

The submitBatchReportRequest() method takes the request object and places it on the
database queue to be processed when the appropriate ReportQueueManager gets a chance

to complete it.

6.2.4.1 Batch Report Min/Max Start Time
Before submitting a batch report request, you may set the Min and Max Start Times by
calling the setMinStartTime() and setMaxStartTime() methods on the ADEReportRequest

object, providing a date and time. These settings prevent a report from being processed

before the given min start date and after the given max date. These values are mutually
independent, meaning that setting one does not require setting the other.

7. WEBADE REPORT GENERATION TEST APPLICATION

The WebADE Report Generation Test application provides a demonstration of an application

using the Report Generation API to create and process report requests.

Before installing the application, there needs to be one test Crystal report and one test

Oracle stored procedure created and configured to be called by the Report Generation Test
application.

7.1 INSTALLING THE APPLICATION

� Create a new application in the servlet container called reporttest.
� Deploy the reportTest.war to this application.

� Create entries in the WebADE Database for the application that create the application
name, report application configuration information, and report proxy control

information so that there are two report connections configured, one for Crystal and

one for Oracle.
� Edit and recompile the ReportRequestAction class for the application settings the

appropriate constants needed to call the test Crystal and Oracle reports.

7.2 FEATURES DEMONSTRATED

The demo allows report requests to be created both for online and batch processing, using

both Crystal and Oracle to generate reports.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 25

8. TROUBLESHOOTING

8.1 REPORT GENERATION API TROUBLESHOOTING

8.1.1 Error Handling

This section describes the various errors thrown by the Report Generation API, the cause of

those errors, and the appropriate actions to take to fix the problem.

ADEDatabaseException

Source Report Generation API

Cause The ADE database connection encountered an error.

Action This probably means the ADE database connection was lost. When the database
comes back up, the web application will have to be restarted.

When Report Queue Managers encounter an ADEDatabaseException, they stop
processing and wait until they can reconnect with the database. When they re-
establish a connection, they will reset any requests they were processing when they
lost connection and resume request processing.

ServerConfigurationException

Source Report Generation API

Cause An error was encountered while initializing the application.

Action Check the report generation configuration settings for the application in the ADE
database and restart the application.

SessionInitializationException

Source Report Generation API

Cause A Crystal session could not be retrieved before the MAX_WAIT time expired.

Action This is a result of the request load being too great for the number of sessions
allocated to this application. Increase the MAX_SESSIONS value. Caution:
Increasing this number may cause the total number of allocated sessions for a Crystal
Web Server to exceed the number of licenses. If this occurs, the server will start
refusing requests.

 Another possibility is some requests may be taking too long to process and cause
timeouts. If this is happening, steps should be taken to prevent those requests from
being submitted.

ServerRequestException

Source Report Generation API

Cause An error occurred while processing a report request.

Ministry of Forests

Information Management Group

Web Application Development Environment

Technical Reference Guide

25-Sep-2008 Page 26

Action This is probably a result of an error in the request’s parameters and settings. Check
the values before resending the request.

ReportDeliveryException

Source Report Generation API

Cause An error while delivering the report.

Action This occurs after a report has been successfully retrieved from the report server, but
an error occurred while delivering the report. If the delivery was by Email, check
that the Email to address is correct and the SMTP host is functioning properly.

NullPointerException

Source Report Generation API

Cause The Application singleton returns null when getWebADEExtension() is called while
trying to retrieve the ADEReportManager extension.

Action This occurs when the ADEReportManager has not been properly loaded at
application initialization. This is possibly due to the report-generation-
preferences.sql file not being run or properly configured for your application. See
this section for more information.

