

WEBADE TASK MANAGER EXTENSION

Developer’s Guide

Client: Ministry of Forests

Information Management Group
Date: December 10, 2007

Revision: 6

Vivid Solutions Inc.
Suite #1A, 2328 Government St.

Victoria, BC V8T 5G5

Phone: (250) 385-6040
Fax: (250) 385-6046

Website: www.vividsolutions.com

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 2 of 24

Document Change Control

REVISION NUMBER DATE OF ISSUE AUTHOR(S) DESCRIPTION

1 January 31, 2005 Jason Ross Original draft

2 March 2, 2005 Jason Ross Updated to reflect version
1.0.0

3 April 21, 2005 Jason Ross Updated to reflect version
1.1.0

4 September 21, 2005 Jason Ross Updated sample start-
time value to conform to
XML schema spec.

5 January 27, 2006 Jason Ross Updated to WebADE 4.

6 December 10, 2007 Jason Ross Updated to include
instructions for the

optional configuration
WebADE preferences.

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 3 of 24

Table of Contents

1. INTRODUCTION... 5

2. INITIALIZING THE TASK MANAGER EXTENSION ... 6

2.1 DEFINING THE TASKS CONFIGURATION FILE LOCATION... 6
2.2 TASK MANAGER EXTENSION REQUIREMENTS.. 6

3. CONFIGURING TASKS .. 7

3.1 SAMPLE “TASKS.XML” FILE.. 7
3.2 CONFIGURING A TASK ... 8

3.2.1 WRITING A TASK TAG ... 8

3.2.2 CONFIGURING THE TASK.. 8

3.2.2.1 SECURABLE PROPERTIES.. 8

3.2.3 SCHEDULING THE TASK ... 8

4. CREATING A TASK.. 10

4.1 ONNOTIFICATION() METHOD.. 10
4.2 TASK NOTIFICATION BROADCASTER ... 10
4.3 GETTING PROPERTY SETTINGS... 10
4.4 USING THE WEBADE WITHIN YOUR TASK.. 10
4.5 GETTING A CONNECTION TO THE WEBADE DATABASE .. 11

5. LISTENING TO OTHER TASKS ... 12

5.1 TASK NOTIFICATION TYPES FOR ALL TASKS .. 12
5.2 CUSTOM NOTIFICATIONS .. 13

5.2.1 DEFINING A TASK NOTIFICATION .. 13

5.2.2 SENDING A TASK NOTIFICATION ... 13

6. CONFIGURING THE DEFAULT DOMAIN (OPTIONAL) .. 14

6.1 CONFIGURING THE DEFAULT DOMAIN ... 14
6.1.1 THE DEFAULT-DOMAIN TAG .. 14

7. CONFIGURING ADAPTORS (OPTIONAL) .. 15

7.1 CONFIGURING THE RMI ADAPTOR.. 15
7.1.1 THE RMI TAG ... 15

7.2 ADDING AUTHENTICATION TO THE ADAPTOR. ... 16

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 4 of 24

7.2.1 USERNAME/PASSWORD AUTHENTICATION.. 16

7.2.2 TRUSTED APPLICATION SIGNATURE AUTHENTICATION ... 16

8. COMMUNICATING REMOTELY WITH APPLICATION TASKS ... 18

8.1 CONNECTING TO THE JMX SERVER USING THE RMI ADAPTOR.. 18
8.2 SETTING CREDENTIALS .. 18

8.2.1 USERNAME/PASSWORD CREDENTIALS... 18

8.2.2 TRUSTED APPLICATION SIGNATURE CREDENTIALS .. 18

8.3 CONNECTING TO THE MBEANSERVER.. 19

9. GENERATING PUBLIC/PRIVATE KEY PAIRS .. 20

9.1 THE GENERATEKEYPAIR() METHOD .. 20
9.2 THE SIGNMESSAGE() METHOD .. 20

10. FUTURE ENHANCEMENTS .. 21

11. APPENDIX A: TROUBLESHOOTING .. 22

11.1 START TIME AND/OR END TIME ATTRIBUTE NOT RECOGNIZED... 22

12. APPENDIX B: PREFERENCES SQL SCRIPT ... 23

12.1 PREFERENCES CONFIGURATION PARAMETERS.. 23

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 5 of 24

1. INTRODUCTION

The Task Manager Extension allows a WebADE application to create and manage tasks that
need to be run autonomously on a fixed schedule. This document describes how initialize

the Task Manager Extension and create and deploy custom tasks for use in your application.

The Task Manager extension currently relies on the JMX API for most of it’s functionality.

However, you will notice that the exposed API does not reference any JMX classes. This is

to allow future portability. Also, as the JMX API’s scope goes well outside of this extension,
the Task Manager API simplifies the JMX API to simplify coding for the task developer

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 6 of 24

2. INITIALIZING THE TASK MANAGER EXTENSION

The Task Manager is a WebADE Extension, and, as such, is initialized by inserting WebADE
preferences into the WebADE PREFERENCE table (See the WebADE User’s Guide for

information on configuring WebADE extensions). This will create the TaskManagerExtension

and load it in your WebADE Application singleton, where you can retrieve the extension by
calling:

application.getWebADEExtension("ca.bc.gov.webade.ex tension.taskmanager.TaskManagerExte
nsion");

2.1 DEFINING THE TASKS CONFIGURATION FILE LOCATION

The XML configuration file defining the tasks for an application, by default, should be placed

in the web application at “WEB-INF/classes/tasks.xml”.

As default, there are two things to note, the file is read-only, and the file must be included

in the WAR file, making it troublesome to modify.

If you wish to include the task file separately, or you wish to enable task properties as

“securable” (See below), you should change the task manager extension’s WebADE
preferences as desired. See Appendix B for the SQL required to set these preferences.

The “load-file-as-resource” preference indicates whether the file will be loaded as a resource
or as a file location. This defaults to true, but should be set to false if you wish the file to be

located somewhere other than WEB-INF/classes/tasks.xml

The “tasks-file-rewritable” defaults to false, but should be set to true, if your wish the task

manager to obscure securable properties in the file.

The “tasks-file-location” is used when the “load-file-as-resource” is false. This will define

the location of the task.xml file, usually outside of the web application’s directory structure,
in a local directory.

2.2 TASK MANAGER EXTENSION REQUIREMENTS

Before the WebADE loads the Task Manager Extension, the following steps must be

completed:

1) Make sure the “webade-taskmanager-01_00_00.jar” is included in the web

application’s WEB-INF/lib directory, or at least is configured at the same class loader
level as the WEB-INF/classes directory, as the classes in the “webade-

taskmanager.jar” need to be able to load the “tasks.xml” file from this directory.
2) Create a properly configured “tasks.xml” file. See section 3 for instructions on

configuring this file.

3) Make sure the Task Manager Extension is loaded by WebADE (See above).

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 7 of 24

3. CONFIGURING TASKS

In order for the Task Manager Extension to be able to load and configure your application’s
scheduled tasks, you must:

1) Make sure the TaskManagerExtension class in the “webade-taskmanager.jar” can

locate the class files of your task and all classes that your task depends on.
2) Make sure your tasks are properly configured in the “tasks.xml” file.

3.1 SAMPLE “TASKS.XML” FILE

Below is a sample “task.xml” file:

<?xml version="1.0" encoding="UTF-8"?>
<task-manager-settings xmlns:xsi="http://www.w3.org /2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="task-manager.xsd">
 <task name="TestTask1" class-name="test.tasks.T estPropertyTask">
 <property-set name="set1">
 <property name="prop1" value="val1"/>
 <property name="prop2" value="val2"/>
 </property-set>
 <schedule>
 <include>
 <period type=”minutes”>5</period>
 </include>
 </schedule>
 </task>
 <task name="TestTask2" class-name="test.tasks.T estPropertySetTask">
 <property-set name="set1">
 <property name="prop1" value="val1"/>
 <property name="prop2" value="val2"/>
 </property-set>
 <property-set name="set2">
 <property name="prop1" value="val4"/>
 <property name="prop3" value="val3"/>
 </property-set>
 <schedule>
 <include>
 <number-of-occurrences>10</number-o f-occurrences>
 <period>10000</period>
 </include>
 </schedule>
 </task>
 <task name="TestTask3" class-name="test.tasks.T estTask">
 <schedule>
 <include>
 <start-time>2005-01-25T14:03:00.000 00-08:00</start-time>
 <number-of-occurrences>10</number-o f- occurrences >
 <period type="hours">24</period>
 <fixed-rate>true</fixed-rate>
 </include>
 </schedule>
 </task>

</task-manager-settings>

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 8 of 24

3.2 CONFIGURING A TASK

There are three steps to configuring a task in the “tasks.xml” file:

1) Declare the task by adding a new task tag in the task-manager base tag.
2) Configure the task with a set of property-set and property tags (optional).
3) Define the schedule for the task.

3.2.1 WRITING A TASK TAG

The “task-manager” tag contains any number of “task” tags that define the tasks to be
loaded by the Task Manager Extension. Each “task” tag has two mandatory attributes,

“name” and “class-name”. The name should be set to a unique name among all “task”tags.
The “class-name” value should be the fully qualified Java class that implements

ScheduledTask.

3.2.2 CONFIGURING THE TASK

If your task requires configuration properties, you can initialize them in two ways; define a
set of “property” tags, or define properties in sets of “property-set” tags. NOTE: these

options are mutually exclusive.

If your settings can be defined by name/value pairs, with each pair having a unique name,

then simply define a separate “property” tag with name and value attributes set to your

expected values.

Alternatively, you can divide task properties into separate property set groups. Wrap each

set of property tags with “property-set” tags, assigning each “property-set” tag with a
unique name.

3.2.2.1 SECURABLE PROPERTIES

Because tasks are configured in a plain text file, it is desirable to have sensitive settings,
like passwords, to be obscured. This is possible, if the tasks.xml is loaded as a file (See

above), by setting the optional property attribute “securable” to “true”. See below:

<property name="database.password" value="password" securable="true"/>

3.2.3 SCHEDULING THE TASK

Each task will be scheduled by the Task Manager Extension, as specified in the “tasks.xml”

file. To define the schedule for a task, you must add a schedule tag after any property or

property-set tags defined for the task. Each “schedule” tag should contain an “include” tag.
The “include” tag can contain the following set of tags:

- start-time

- end-time
- number-of-occurrences

- period
- fixed-rate

START-TIME TAG

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 9 of 24

The start-time tag defines the starting time that the task will receive notifications and being

processing.

The start-time tag’s value must be set using the following pattern:

YYYY-MM-DDThh:mm:ss.00000-hh:mm
As an example, “2005-01-25T14:03:00.00000-08:00” would be read as “January 25, 2005

2:03PM” at –8H off GMT, or Pacific Time. NOTE: Ensure that all times defined for your
tasks have a GMT offset defined, or else you may get unexpected results.

NOTE: If a “start-time” tag is not defined, the current time is used.

END-TIME TAG

The end-time tag defines the time that the task will stop receiving notifications and halt

processing. Only one of “end-time” or “number-of-occurrences” can be defined for each
task schedule include definition.

The end-time tag’s value must be set using the following pattern:
YYYY-MM-DDThh:mm:ss.00000-hh:mm

As an example, “2005-01-25T14:03:00.00000-08:00” would be read as “January 25, 2005
2:03PM” at –8H off GMT, or Pacific Time. NOTE: Ensure that all times defined for your

tasks have a GMT offset defined, or else you may get unexpected results.

NOTE: If neither an “end-time” or “number-of-occurrences” tag is not defined, the task will

continue to receive notifications indefinitely.

NUMBER-OF-OCCURRENCES TAG

The “number-of-occurrences” tag defines the total number of notifications that the task will

receive before halting processing. Only one of “end-time” or “number-of-occurrences” can

be defined for each task schedule include definition.

NOTE: If neither an “end-time” or “number-of-occurrences” tag is not defined, the task will

continue to receive notifications indefinitely.

PERIOD TAG

The “period” tag defines the amount of time between notifications that are sent to your
task. There is one optional attribute, “period-type”, that allows you to define the

granularity of the period value. By default, this is set to “milliseconds”, but can be set to

any of the following values: “milliseconds”, “seconds”, “minutes”, “hours”, or “days”.

FIXED-RATE TAG

The “fixed-rate” tag defines a flag that indicates whether or not the Task Manager Extension

will wait for your task to finish responding to a notification before it starts measuring the
wait period between notifications. If not defined, by default this flag is set to false.

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 10 of 24

4. CREATING A TASK

To create a scheduled task, simply implement the ca.bc.gov.mof.taskmanager.Task
interface.

For most Tasks, it is sufficient enough to extend the AbstractTask or
AbstractBroadcastingTask in the ca.bc.gov.mof.taskmanager package, implementing the

onNotification() method.

Each time a notification is raised, according to the schedule for your task as defined in the

“tasks.xml” file, this method is called. This means that any and all processing for your task

should be performed in here.

4.1 ONNOTIFICATION() METHOD

The onNotification() method of the AbstractTask class is called whenever a notification is

raised that needs to be handled by the task. This is most commonly a scheduled
notification, as defined by your task’s schedule in the tasks.xml file. However, there are

other possible notifications, such as notifications from other tasks. See the section on

listening to other tasks for information about these types of notifications.

The onNotification() method has one parameter, a TaskNotification object. If your task only

operates on a schedule, as defined in the tasks.xml file, then you will have little interest in
the values held in this TaskNotification object. This object has much more value when

listening to other tasks.

4.2 TASK NOTIFICATION BROADCASTER

If a task is to send custom notifications, it must implement the TaskNotificationBroadcaster
interface. This interface allows the task to add listeners, define what notifications are being

broadcast, and send notifications to all listeners. Again, we recommend simply extending
the abstract class “AbstractBroadcastingTask”, as this class implements all of the basic

plumbing of this interface, leaving only a single method for you to implement that defines

the metadata of your notifications. See listening to other tasks for more information on
notifications.

4.3 GETTING PROPERTY SETTINGS

To retrieve the property settings configured in the tasks.xml file for your task, call the

getPropertySet() method, passing the desired property set name (as configured in the
property-set tag’s name attribute), which returns a Properties object containing all properties
contained by that set. You can also call getPropertySetNames() to return a list of all sets defined for
this task.

4.4 USING THE WEBADE WITHIN YOUR TASK

If your task requires access to the WebADE Application singleton, implement the interface

“ca.bc.gov.mof.webade.extension.taskmanager.ApplicationInitialization”. When your task is

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 11 of 24

initialized, the application singleton will be passed via the setApplication() method defined

by this interface.

4.5 GETTING A CONNECTION TO THE WEBADE DATABASE

If your task requires access directly to the WebADE database, implement the interface

“ca.bc.gov.mof.webade.extension.taskmanager.ADEConnectionProxyInitialization”. When

your task is initialized, an ADEConnectionProxy instance will be passed via the
setADEProxy() method defined by this interface.

ADEConnectionProxy has two methods, “getADEConnection()” and

“releaseADEConnection(Connection)”, that open and close connections to the WebADE

database. NOTE: You should always use the releaseConnection() method, as opposed to
closing the connection class yourself, by calling close() on the Connection instance.

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 12 of 24

5. LISTENING TO OTHER TASKS

Some applications have a need to create tasks that, either instead of or in addition to
responding to a schedule, need to listen to notifications generated by other tasks. To

configure a task to respond to another tasks notifications, you configure these tasks like in

the example below.

<?xml version="1.0" encoding="UTF-8"?>
<task-manager-settings xmlns:xsi="http://www.w3.org /2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="task-manager.xsd">
 <task name="TestTask1" class-name="test.tasks.T estPropertyTask">
 <property-set name="set1">
 <property name="prop1" value="val1"/>
 <property name="prop2" value="val2"/>
 </property-set>
 <schedule>
 <include>
 <period type=”minutes”>5</period>
 </include>
 </schedule>
 </task>
 <task name="TestTask2" class-name="test.tasks.T estTask">
 <notification-listener>
 <task>TestTask1</task>
 </notification-listener>
 </task>
</task-manager-settings>

In this example, “TestTask2” is listening to “TestTask1”. When “TestTask1” sends out

notifications, “TestTask2” will receive them and have it’s onNotification() method called,
with the notification object passed in as a TaskNotification instance.

The TaskNotification object contains various information about the raised notification, such
as notification type, notification source, a message string, and possible custom user data.

5.1 TASK NOTIFICATION TYPES FOR ALL TASKS

There is one default notification type: Task.NOTIFICATION_TYPE_STATUS_CHANGE.

Notifications of this type are generated by the AbstractTask and AbstractBroadcastingTask

classes. It is suggested that if you implement your own Task class from scratch, that you
also support these notification types. NOTIFICATION_TYPE_STATUS_CHANGE notifications

are sent to all listeners when the state of the task changes. These states are defined in the

TaskStatus class, and are as follows:

TASK STATUS DESCRIPTION

CREATED Code indicating the Task was created.

INITIALIZING Code indicating the Task is being initialized.

STOPPED Code indicating the Task is currently stopped, and not responding to
scheduled events.

RUNNING Code indicating the Task is currently running, and is waiting for scheduled
events.

PROCESSING_TASK Code indicating the Task is currently running, and is responding to a
scheduled event.

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 13 of 24

SHUTTING_DOWN Code indicating the Task is currently shutting down.

HALT_ON_ERROR Code indicating the Task has encountered a fatal error, as has stopped
running

5.2 CUSTOM NOTIFICATIONS

If a task implements the TaskNotificationBroadcaster interface, it can broadcast notifications

to classes implementing the TaskNotificationListener interface. NOTE: Again, you are
encouraged to extend the AbstractBroadcastingTask, instead of creating a completely new

implementation, as much of the difficult work is done for you.

There are two steps to implementing a task that broadcasts notifications: Defining the

supported notifications and broadcasting these notifications.

5.2.1 DEFINING A TASK NOTIFICATION

The TaskNotificationBroadcaster interface has one method, called

getSupportedTaskNotifications(), that allows an external process to discover what

notifications are broadcast by this task. This method returns an array of
TaskNotificationMetadata objects, with each TaskNotificationMetadata instance defining a

set of notification types. This set of notification types should be related to each other, and
often a TaskNotificationMetadata instance defines only one type. This metadata instance

also specifies the fully-qualified class name of the TaskNotification implementation and a

text description of the purpose for this set of notifications.

NOTE: When your task broadcasts a notification of a type specified in a given

TaskNotificationMetadata instance, this notification must be able to be cast to the class as
defined in the same TaskNotificationMetadata instance.

The AbstractBroadcastingTask class has a slightly different method, called
getTaskNotificationMetadata(). This is because the AbstractBroadcastingTask supports the

Task.NOTIFICATION_TYPE_STATUS_CHANGE, and appends this type to the set of

notification metadata objects your custom task supports.

5.2.2 SENDING A TASK NOTIFICATION

All that is needed to broadcast a notification task is to call the broadcastTaskNotification()
method, passing in your initialized TaskNotification instance. This notification will be

handed to all listeners, allowing them to respond to the notification.

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 14 of 24

6. CONFIGURING THE DEFAULT DOMAIN (OPTIONAL)

Oracle’s application server, IAS, does not allow web applications to use just any domain for
their JMX beans. Instead, IAS requires the domain be set to the same name as the

application name component of the application URL (For example, an application with the

URL “http://localhost/oss” should use the domain “oss”). Because of this issue, the
WebADE Task Manager Extension cannot use the default “task-manager” name as the JMX

domain that will host the application’s tasks. Instead you will need to define the default

domain within the tasks.xml file, as described in the section below.

6.1 CONFIGURING THE DEFAULT DOMAIN

To define the JMX default domain for task JMX beans, you must add a default-domain tag to

your tasks.xml file, as in the example below:

<?xml version="1.0" encoding="UTF-8"?>
<task-manager-settings xmlns:xsi="http://www.w3.org /2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="task-manager.xsd">
 <default-domain>oss</default-domain>
 <task name="TestTask1" class-name="test.tasks.T estPropertyTask">
 <property-set name="set1">
 <property name="prop1" value="val1"/>
 <property name="prop2" value="val2"/>
 </property-set>
 <schedule>
 <include>
 <period type=”minutes”>5</period>
 </include>
 </schedule>
 </task>
</task-manager-settings>

6.1.1 THE DEFAULT-DOMAIN TAG

The <default-domain> tag has a single tag value. This value should be set to the

application name component of the application URL (For example, an application with the

URL “http://localhost/oss” should use the domain “oss”).

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 15 of 24

7. CONFIGURING ADAPTORS (OPTIONAL)

Often it is required to remotely monitor and control tasks deployed in a web application.
Sometimes this is to perform related administrative or application tasks in response to

events that occur within these tasks. Another reason to remotely communicate with these

task is to mange them, stopping, starting, and performing other operations on them as
needed.

This section describes how to configure a web application with internal tasks to expose an
adaptor that will allow external systems to communicate with the tasks. The next section

gives an overview on how to create these remote connections and control and monitor these

tasks.

7.1 CONFIGURING THE RMI ADAPTOR

The task scheduler’s RMI adaptor allows other applications to connect to the application’s

tasks using RMI (Java’s Remote Method Invocation API). To enable the RMI adaptor, you
must add an RMI-configured adaptor tag to your tasks.xml file, as in the example below.

<?xml version="1.0" encoding="UTF-8"?>
<task-manager-settings xmlns:xsi="http://www.w3.org /2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="task-manager.xsd">
 <adaptor>
 <rmi port="1100" server="localhost"/>
 </adaptor>
 <task name="TestTask1" class-name="test.tasks.T estPropertyTask">
 <property-set name="set1">
 <property name="prop1" value="val1"/>
 <property name="prop2" value="val2"/>
 </property-set>
 <schedule>
 <include>
 <period type=”minutes”>5</period>
 </include>
 </schedule>
 </task>
</task-manager-settings>

7.1.1 THE RMI TAG

The <rmi> tag inside the <adaptor> tag has three optional attributes.

ATTRIBUTE NAME DEFAULT DESCRIPTION

server localhost The name is the server hosting the application.

port 1099 The port on the server that is opened for the RMI adaptor to listen to
remote communication requests.

url jmx The relative url of the adaptor. This attribute does not usually need to be
set, as the default is sufficient.

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 16 of 24

7.2 ADDING AUTHENTICATION TO THE ADAPTOR.

Often, when your application is configured to use the RMI adaptor, you want to place some

form of authentication, to ensure that no unauthorized access to the tasks is given.

There are 2 supported forms of authentication: username/password and signature-based

authentication.

7.2.1 USERNAME/PASSWORD AUTHENTICATION

For simple deployment situations, it is often sufficient to configure several sets of
usernames/passwords in the tasks.xml file, allowing access to the tasks if a request

contains a matching pair of username/password. This is configured in the tasks.xml file as

in the example below.

<?xml version="1.0" encoding="UTF-8"?>
<task-manager-settings xmlns:xsi="http://www.w3.org /2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="task-manager.xsd">
 <authenticator>
 <username-password-module>
 <username-password-pair username="guest " password="guest" />
 <username-password-pair username="admin " password="admin" />
 </username-password-module>
 </authenticator>
 <adaptor>
 <rmi port="1100" server="localhost"/>
 </adaptor>
 <task name="TestTask1" class-name="test.tasks.T estPropertyTask">
 <property-set name="set1">
 <property name="prop1" value="val1"/>
 <property name="prop2" value="val2"/>
 </property-set>
 <schedule>
 <include>
 <period type=”minutes”>5</period>
 </include>
 </schedule>
 </task>
</task-manager-settings>

Each <username-password-pair> tag contains a username and password combination that can be
passed in the request’s credentials. If a request comes without any credentials, or without a matching

pair of username/password, the request will be refused. See the later section on creating remote

connections for more information on how to send these credentials.

7.2.2 TRUSTED APPLICATION SIGNATURE AUTHENTICATION

If another application needs to access the tasks in your application, there can be a certain

level of trust between the two applications. As other applications usually perform some sort

of authentication on their users, it’s often redundant to re-poll the user for their credentials
a second time to give them access to control your tasks.

If you trust another application, that any requests coming from that application are secure,
then a second method of authentication is available, trusted application signature

authentication. In this method, the requesting application signs each request, and your

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 17 of 24

task’s adaptor validates the signature with a public key. If the signature is valid, the

request is allowed through, otherwise it is refused.

To configure the trusted application signature authenticator, you will need to add an

<authenticator> tag to your tasks.xml as in the example below.

<?xml version="1.0" encoding="UTF-8"?>
<task-manager-settings xmlns:xsi="http://www.w3.org /2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="task-manager.xsd">
 <authenticator>
 <signature-module>
 <signature-key key-source="ESF" public-
key="308201b83082012c06072a8648ce3804013082011f0281 8100fd7f53811d75122952df4a9c2eece4e
7f611b7523cef4400c31e3f80b6512669455d402251fb593d8d 58fabfc5f5ba30f6cb9b556cd7813b801d3
46ff26660b76b9950a5a49f9fe8047b1022c24fbba9d7feb7c6 1bf83b57e7c6a8a6150f04fb83f6d3c51ec
3023554135a169132f675f3ae2b61d72aeff22203199dd14801 c70215009760508f15230bccb292b982a2e
b840bf0581cf502818100f7e1a085d69b3ddecbbcab5c36b857 b97994afbbfa3aea82f9574c0b3d0782675
159578ebad4594fe67107108180b449167123e84c281613b7cf 09328cc8a6e13c167a8b547c8d28e0a3ae1
e2bb3a675916ea37f0bfa213562f1fb627a01243bcca4f1bea8 519089a883dfe15ae59f06928b665e807b5
52564014c3bfecf492a0381850002818100addbb7547b058d28 3e5f6a69070507b2cb64882ba17d89be147
993abf74546ac894c2e55ca15c1fd2c9cfb2148270d8b6a87bc a663ab6ab8e271f9a6e84cd04e6379efdde
d74ee12d2417ec04a3bb1efc170774c006cce0b78147ab00b25 77fb0e648c7a781e2bf32d6603036b5bd7a
81b4227f64c624028a089a2ac54890e5e" />
 </signature-module>
 </authenticator>
 <adaptor>
 <rmi port="1100" server="localhost"/>
 </adaptor>
 <task name="TestTask1" class-name="test.tasks.T estPropertyTask">
 <property-set name="set1">
 <property name="prop1" value="val1"/>
 <property name="prop2" value="val2"/>
 </property-set>
 <schedule>
 <include>
 <period type=”minutes”>5</period>
 </include>
 </schedule>
 </task>
</task-manager-settings>

The <signature-module> tag can contain any number of <signature-key> tags. Each <signature-
key> has the following attributes.

ATTRIBUTE NAME DESCRIPTION

key-source The application acronym of the trusted application.

public-key The public key for this application, which will be used to validate requests
originating from this application.

The public key is a very long string that is generated by the KeyPairFactory class in the

ca.bc.gov.mof.taskmanager.authentication package of the task manager extension. See the
section on generating keys later on in this document for more information on how to create

these keys.

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 18 of 24

8. COMMUNICATING REMOTELY WITH APPLICATION TASKS

If an adaptor is specified for an application’s tasks, then other applications can remotely
communicate with this application’s tasks. This section gives an overview of how to connect

with a remote MBeanServer, and how to invoke methods on remote tasks. This section

requires knowledge of JMX, as this release of the task manager extension does not provide
a simplified method of connecting to tasks remotely.

8.1 CONNECTING TO THE JMX SERVER USING THE RMI ADAPTOR

The first step in connecting to the MBeanServer remotely is to create a properly formatted

JMX Servie URL. The JMXUtils class in the ca.bc.gov.webade.management.jmx package is
provides a useful helper method to create an instance of this object. Simply pass in the

target server name, port, and relative url (We recommend using the

ca.bc.gov.webade.management.jmx .MBeanServerFactory.DEFAULT_RELATIVE_URL value for
most cases).

JMXUtils.createRMIJMXServiceURL(SERVER_NAME, SERVER _PORT,
MBeanServerFactory.DEFAULT_RELATIVE_URL);

8.2 SETTING CREDENTIALS

If the target server has authentication turned on, you will need to send credentials with
your connection request. Credentials are passed into an “environment” Map object with the

static constant value of javax.management.remote.JMXConnector.CREDENTIALS as the map

key. These credentials are different for username/password authentications and trusted
application signature authentication.

JMXServiceURL url = ...
Map environment = new HashMap();
Object credentials = ...
environment.put(JMXConnector.CREDENTIALS, credentia ls);
// Connect to the server
JMXConnector cntor = JMXConnectorFactory.connect(ur l, environment);

8.2.1 USERNAME/PASSWORD CREDENTIALS

The credentials object for username/password is a size-2 String array, with username as
the first value, and password as the second value in the array.

8.2.2 TRUSTED APPLICATION SIGNATURE CREDENTIALS

The credentials object for trusted application signature authentication is an instance of

TrustedApplicationCredentials. This credentials object is filled out like in the example below,
using the application’s generated private key string, the application’s acronym, the

requesting user id, and the encryption algorithm.

String privateKey = ...
TrustedApplicationCredentials credentials = new Tru stedApplicationCredentials();
credentials.setApplication("ESF");

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 19 of 24

credentials.setUsername("idir\\myuser");
credentials.setEncryptionAlgorithm("DSA");
credentials.sign(privateKey);

8.3 CONNECTING TO THE MBEANSERVER

Putting this all together, once you have created the JMX Service URL and loaded the

appropriate credentials, if needed, you just need to connect and retrieve an
MBeanServerConnection instance, like in the example below.

JMXServiceURL url = ...
Map environment = new HashMap();
Object credentials = ...
environment.put(JMXConnector.CREDENTIALS, credentia ls);
// Connect to the server
JMXConnector cntor = JMXConnectorFactory.connect(ur l, environment);
MBeanServerConnection connection = cntor.getMBeanSe rverConnection();

With this MBeanServerConnection object, you can perform all normal MBeanServer

operations, like search for MBeans, invoke methods on registered MBeans, and register

listeners to MBeans on the server. Please see Sun’s JMX API documentation for more
information.

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 20 of 24

9. GENERATING PUBLIC/PRIVATE KEY PAIRS

The KeyPairFactory class provides a mechanism that generates a pair of public and private
keys, to be used for trusted application signature authentication. The private key should be

kept by the application that wishes to communicate with tasks remotely. The public key

should be given to any task environment that is to be called by the application. The
KeyPairFactory has two key methods for applications that will remotely call tasks,

generateKeyPair() and signMessage().

9.1 THE GENERATEKEYPAIR() METHOD

The generateKeyPair() method generates a set of private and public keys. The return value

is a size 2 string array, with the first entry containing the private key, and the second, the

public key. This method takes two parameters, a number of bits of encryption (Usually 512
or 1024 are acceptable values) and an encryption algorithm (such as "DSA").

9.2 THE SIGNMESSAGE() METHOD

The signMessage() method should be called by the target application when sending a

request to a target task. This method returns the encrypted signature, which should be

placed in the TrustedApplicationCredentials instance to be passed in the request as
credentials for the request (see above).

This method takes three parameters, the encryption type, the private key (as generated
above), and the message to sign. This message is the username of the user of the

application that is invoking the request to the target task. This username string must also

be set in the TrustedApplicationCredentials instance, so the task can use it to validate the
signature.

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 21 of 24

10. FUTURE ENHANCEMENTS

Below is a list of future enhancements to the task scheduling extension.

- Add an API that greatly simplifies remote calls to tasks.

- Add functionality that allows authentication to occur against LDAP directories for a
username and password

- Add support for tasks that can remotely listen to other tasks.

- Add WebADE authorization for each exposed method in all tasks. (Granular
authorization)

- Add database-configuration of tasks, including dynamic configuration and task loading

- Add support for other task configuration schemes.
- Add more dynamic notification handlers, including filters of notifications, so a task only

receives certain notifications from other tasks, instead of all notifications.

- Add support for RMI connections using Secure Socket Layer (SSL).
- Add support for Oracle scheduling

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 22 of 24

11. APPENDIX A: TROUBLESHOOTING

11.1 START TIME AND/OR END TIME ATTRIBUTE NOT RECOGNIZED

If you observe your start time and/or end time attributes for your task’s schedule are
being ignored, make sure the format is correct. A common error is to exclude the

milliseconds in the value (e.g. 2005-01-25T14:03:00-08:00). The current version of

Task Manager requires this format to be followed exactly, as in the example below.

<task name="TestTask3" class-name="test.tasks.TestT ask">
 <schedule>
 <include>
 <start-time>2005-01-25T14:03:00.00000-0 8:00</start-time>
 <number-of-occurrences>10</number-of- o ccurrences >
 <period type="hours">24</period>
 <fixed-rate>true</fixed-rate>
 </include>
 </schedule>
</task>

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 23 of 24

12. APPENDIX B: PREFERENCES SQL SCRIPT

This is the full set of SQL inserts used to configure the Task Manager Extension to run within
a WebADE application:

--- ----------------------------
-- Task Manager Preferences script. --
-- See the WebADE Task Manager Extension Developer' s Guide --
-- section 2. 'INITIALIZING THE TASK MANAGER EXTENS ION' --
-- for a description of these database row entries. --
--- ----------------------------

set feedback off
prompt Loading PREFERENCE...

insert into PREFERENCE (PREFERENCE_ID, PREFERENCE_T YPE_CODE, PREFERENCE_SUB_TYPE,
APPLICATION_ACRONYM, PREFERENCE_SET_NAME, PREFERENCE_NAME, PREFERENCE_VALUE, CREATED_BY,
CREATED_DATE, UPDATED_BY, UPDATED_DATE, REVISION_COUNT, EUSER_ID)
values (preference_seq.NEXTVAL, 'WDE', 'app-config' , '&&APPLICATION_ACRONYM', 'extensions',
'extension', 'task-manager', USER, SYSDATE, USER, S YSDATE, 1, null);

insert into PREFERENCE (PREFERENCE_ID, PREFERENCE_T YPE_CODE, PREFERENCE_SUB_TYPE,
APPLICATION_ACRONYM, PREFERENCE_SET_NAME, PREFERENCE_NAME, PREFERENCE_VALUE, CREATED_BY,
CREATED_DATE, UPDATED_BY, UPDATED_DATE, REVISION_COUNT, EUSER_ID)
values (preference_seq.NEXTVAL, 'EXT', 'task-manage r', '&&APPLICATION_ACRONYM', null, 'extension-
class-name', 'ca.bc.gov.webade.extension.taskmanage r.TaskManagerExtension', USER, SYSDATE, USER,
SYSDATE, 1, null);
insert into PREFERENCE (PREFERENCE_ID, PREFERENCE_T YPE_CODE, PREFERENCE_SUB_TYPE,
APPLICATION_ACRONYM, PREFERENCE_SET_NAME, PREFERENCE_NAME, PREFERENCE_VALUE, CREATED_BY,
CREATED_DATE, UPDATED_BY, UPDATED_DATE, REVISION_COUNT, EUSER_ID)
values (preference_seq.NEXTVAL, 'EXT', 'task-manage r', '&&APPLICATION_ACRONYM', null, 'tasks-
file-rewritable', '&TASKS_FILE_REWRITABLE_FLAG', US ER, SYSDATE, USER, SYSDATE, 1, null);
insert into PREFERENCE (PREFERENCE_ID, PREFERENCE_T YPE_CODE, PREFERENCE_SUB_TYPE,
APPLICATION_ACRONYM, PREFERENCE_SET_NAME, PREFERENCE_NAME, PREFERENCE_VALUE, CREATED_BY,
CREATED_DATE, UPDATED_BY, UPDATED_DATE, REVISION_COUNT, EUSER_ID)
values (preference_seq.NEXTVAL, 'EXT', 'task-manage r', '&&APPLICATION_ACRONYM', null, 'load-file-
as-resource', '&LOAD_FILE_AS_RESOURCE_FLAG', USER, SYSDATE, USER, SYSDATE, 1, null);
insert into PREFERENCE (PREFERENCE_ID, PREFERENCE_T YPE_CODE, PREFERENCE_SUB_TYPE,
APPLICATION_ACRONYM, PREFERENCE_SET_NAME, PREFERENCE_NAME, PREFERENCE_VALUE, CREATED_BY,
CREATED_DATE, UPDATED_BY, UPDATED_DATE, REVISION_COUNT, EUSER_ID)
values (preference_seq.NEXTVAL, 'EXT', 'task-manage r', '&&APPLICATION_ACRONYM', null, 'tasks-
file-location', '&TASKS_FILE_LOCATION', USER, SYSDA TE, USER, SYSDATE, 1, null);

prompt 5 records loaded. Not Committed.
set feedback on
prompt Done.

The last three preference row entries are optional (the preferences for 'tasks-file-rewritable’,

'load-file-as-resource', and 'tasks-file-location'), and so do not need to be inserted into the

WebADE PREFERENCE table, unless required by your application (remove them from the
script before running it if you do not need them). Instructions for configuring these optional

preferences can be found in the section below.

12.1 PREFERENCES CONFIGURATION PARAMETERS

When running the preferences script listed above, you will be prompted for the

following parameters:

PARAMETER DESCRIPTION

APPLICATION_ACRONYM The acronym for the target WebADE Application.

BC Provincial Government WebADE Task Manager Extension Developer’s Guide

Page 24 of 24

TASKS_FILE_LOCATION Set to the path and file name of the tasks.xml file used to load the
application’s tasks and their configurations into memory by the Task

Manager Extension.

By default, the Task Manager Extension looks for the tasks.xml file at the
root of the WEB-INF/classes directory of your application’s WAR file. By

setting this parameter, you can place the file anywhere in the WEB-
INF/classes directory tree.

If the LOAD_FILE_AS_RESOURCE_FLAG is set to ‘false’, you can specify any
absolute path on the local hard drive as the location for this file, removing
the need to include it in your application EAR.

LOAD_FILE_AS_RESOURCE_FLAG Valid values are ‘true’ and ‘false’. Flag parameter that indicates whether the
tasks.xml file is loaded into memory as a resource or as a file. This allows
the task manager to load the tasks.xml file from anywhere on the local drive

(value set to false), or only from the classpath (value set to true).

This preference must be set to true if the TASKS_FILE_REWRITABLE_FLAG
is set to ‘true’.

TASKS_FILE_REWRITABLE_FLAG Valid values are ‘true’ and ‘false’. Flag parameter that indicates whether the
tasks.xml file is rewritable. This allows the task manager to save the
tasks.xml file back to disk, encrypting any task property tag values with the

securable attribute set to ‘true’.

This option is ignored if the LOAD_FILE_AS_RESOURCE_FLAG is set to
‘true’.

